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On the refraction of shock waves at a slow-fast gas
interface

By L. F. HENDERSONY{, P. COLELLA{ anD E. G. PUCKETTY

Lawrenee Livermore National Laboratory, Livermore, CA M6, USA

(Received 24 November 1989 and in revined form 12 June 1490}

We present the results of numerical computations of the refraction of a plane shock
wave at a CO,/CH, gas interface. The numerical method was an operator split
version of a second-order Godunov method, with adaptive grid refinement, We
solved the unsteady, two-dimensional, compressible, Euler equations numaerically,
assuming perfect gas equations of state, and compared our results with the
experiments of Abd-El-Fattah & Henderson. Good agreement was usually obtained,
cspecially when the contamination of the (‘*H, by the (0, was taken into uceount.
Remaining discrepancies were ascribed to the uncertainties in measuring certain
wave angles, due to sharp curvature, poor definition, or short length of the waves at
large angles of incidence. All the main features of the regular snd irregular refractions
were resolved numerically for shock strengths that werc weak, intermediate, or
strong. These include free precursor shock waves in the intermediate and strong
cases, evaneseent {smeared out) comMpressions in the weak case, and the appearance
of an extra expansion wave in the bound precursor refraction (BPR). The structure
of & BPR was elucidated for the first time.

1. Introduction

We consider two gases meeting along a plane interface, and we assume for
gimplicity that they both obey the perfeet gas equation of state (figure 1). We
suppose that a plane incident shock i of wave velocity ) is propagated into one of
the gases by the impulsive motion of a rigid boundary, such as a piston which drives
into the gas at a veloeity £f, with [{],| < |Uf. We also assume that all the boundaries
of the system are adiabatic, Subsequently 7 meets the interface between the gases at
an angle of incidence @, = ¢ measured with respect to the interface. The shock i now
begins to pass from the first, or incident gas 1, into the second, or receiving gos 11,
where it becomes the transmitted shock ¢ When its new velocity U differs in
magnitude from (], then by definition i hag been refracted. Formally the relative
refractive index n is defined by (Henderson 1988)

n= (1.0
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Fiovre 1. Refraction of a normal shock wave i at zero angle of incidence, &, = 0, at a plin
interface hetween two media: (a) before refraction; (b} after refruction.

The refraction is slow-fast when n < 1: fast-slow when n > {; and there is no
refraction when n =1,

If in laboratory frame the velocities of the gas upstream and downstream of the
incident shock are u, and #, respectively, then the piston velocity is

Upi = Uy Uy

In this frame of reference the gas upstream of i is undisturbed, so that «, = 0, and
the boundary condition then becomes simply, €4, = u,.

In general a reflected wave is also produced at the gas interface by the refraction
(figure 16). When i is a shock then so also will be £, but the reflected wave may he
either an expansion e, or a shock r. It is assumed that there is always continuity in
the pressure P and in the particle velocity u across the interface. Following refraction
this gives

P=p, (1.2)

2y = Uy (1.3)

The nature of the reflected wave may be determined with the help of (1.2) and (1.3)
together with the notion of wave impedance Z. For head-on refraction at angle of
incidence a, = U the incident wave impedance, Z, is defined by

P-r, _P-f,

U, —uy Upi

Z, =
Alternatively, in shock wave coordinates we have

. °
5‘=-—v—"=-pouu=pnbﬁ, (1.4)
(1]

" u
Z=——t=—pu, (1.5)
]
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where p is the density, v is the specific volume, and we have used the fact that in
shock wave coordinates w, = — . (In general, an uppor case £ (U, U, cte.) always
denotes a velocity with respeet to laboratory coordinates whercas a small case u
(g, g, cte.) may denote a velocity in laboratory coordinates or shock wave
coordinates depending on the context.) The transmitted and reflected wave
impedances %, and Z, are defined similarly. The pressure reflection (R) and
transmission {7) cocfficients are

P—p,_ 2,77,

KPR~ 722 (o
.T_PI—PO__EI_ZI_Zr (1‘7)

=P -P, ZZ-2’

with similar expressions for the shock intensity which is the average power flux
through unit arca in the direetion of propagation, and the coefficient for the total
power transmitted {Henderson 1989). The coefficients (1.6} and (1.7) show that when
the impedance increases during refraction |Z] > |2, then a shock 7 will be reflected
from the interface back into the incident gas because then R > 0, but that when it
decreases 12, < |Z], then we obtain a reflected expansion with £ < 0. When the
impedances are equal, 7, = Z,, there is no reflected wave even though the two gases
may differ in composition or in states. In this case R = 0. Now combining (1.4) for Z
and Z, with (1.1) we obtain

_ Ul _ v 2,
LTI (L.6)

where v, is the specitic volume of the gas upstream of the t shock. So even with
%, = Z,, the wave will still be refracted il v, # v,

More generally, the incident shock may meet the gas interface at a non-zero angle
of incidence a, # 0 (figure 2a), and ditferent refraction phenomena then oceur. The
wave systems illustrated in figure 2(a—) are called regular refractions by analogy with
von Neumann's (1943) classification of regular and Mach reflections. His theory of
regular reflection is easily extended to regular refraction and the results arc in good
agreement with experiment (Jahn 1956, Abd-El-Fattah, Henderson & Lozzi 19765
Abd-El-Fattah & Henderson 1978a, b).

If a regular wave system is to exist, then all of its waves must travel at the same
volocity {7 along the interface, and this fact gives immediately the fundamental law
of refraction, namely
g .9)

sina, sina, sina, sing,’
(] L ¥ )

1

where U} is the velocity of any wave in the reticeted and centred expansion wave, and
a, is the corresponding wave angle (figure 2¢). Evidently, [U} = ¢;, which is the local
speed of sound. Under certain conditions this law may be violated; for example with
a continuous increase in the parameter &, the rogular wave system may break up
with the ¢ shock moving shead of the incident and reflected waves to form some type
of irregular refraction with precursor waves (figure 2d-f). In this event,

i, el G (1.10)
sana, s ay sin o, sin GJ
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FiGURE 2. (a—¢) Regular and (d-f) irregular shock refraction systems for s slow-fast 0, /CH, g
interface, n < 1. (0) Reflected shock, RRR, 12| > 12}, a, > a,; () reflected Mach line degeneracy,
1Z) = 1Z). 2, > a, = a,,; (¢) reflected expansion, RRE, |2] < |Z|, &, > & {d) free precursor von
Neumann refraction, FNR; (e} twin regular reflection-refraction, TRR,; (f} twin Mach re-
flection—refraction, TMR. ¢, Incident shock ; ¢, transmitted shock; r, ¢, reflected shocks e, rellected
expansion wave; k, modified incident shock ; 7 Mach shock ; &, side shock ; &7, modified side shock,
m gan interface; I, Region of undisturbed COy; 11, region of undisturbed C'H,: MW, Mach line;
ed, 5. contact discontinuity : T, ,,, trajectory path of phock wave confluences; y,, ,,. trajectory
path angles of shock wave confluences; ¥, ,, shock triple points; ¢, quadruple point ; O origin where
i first encountered gas interface.

For oblique refraction, &, > 0, it i8 necessary to generalize the definition of wave
impedance to
7, = P-F,
Uy con i’

where g, is the wave angle measured with respeet to the disturbed gas interface (ligure
24). Similar expressions are defined for the other waves, and with these definitions
(1.8) and {1.7) remain valid.

The refraction law (1.9) may be combined with the definitions of a, Z,, and Z, Lo
extend (1.8) to
W _sinay vy Zycos By
T sina, v Zcosgy

n (1.11)
The particular angle a, for which there is equality of impedance, Z; = Z,, is called the
angle of intromission oy = Q. 48 in acoustic theory. The wave 1 is still refracted at
this condition because in general n £ | when a, = «,, (figure 2b).

Using the refraction law we may also write

cose, = (L—sin?a, )t = (1—n ?sin? a .
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Thus cos a, becomes pure imaginary when i—n-%ginta, < (), that is when a, exceeds
{3 i ’ 1
the wormal eritical angle, a,, which is defined by

1

Hina(.=n=”—]. {1.12)
(3

Clearly a, only exists for slow-fast refraction, n < 1. At the eritical condition, ! is
perpendicular to the gas interfuce &, = 1n; that is, it is a normal shock. Accordingly
the gas interface is not deflocted in this special case and it remaing everywhere in a
single plane. It follows that when the pressure £ is applied to the receiving gas it
enuses no deflection of the interfaee, so that it behaves like a rigid surlace. In this
sense |2, = oo, when oy = a,.. In summary, by (1.11} » ix & measure of the capacity
of the gases to bend or refract the incident shock, while by (1.6) and (1.7) the wave
impedances determine the nature of the reflected and transmitted waves.

Whitham's (1958, 1959) theory has been extended in an attempt to deseribe both
regular and irregular refractions (Catherasoo & Sturtevant 1983; Schwendeman
1988). It is attractive not only for its simplicity but also because it often agrees
remarkably well with experiment. However, it is an approximate theory, and it does
not deseribe wave reflections properly, nor disturbanees that arise in the downstream
flow and subscquently overtake a shock. In refracting systems diffieultics can also
arise which are apparently associated with the formation of a ‘shock shock’ on an
interface, or even when one is close to it, Furthermore it cannot deal with shock
discoutinuitics at a gas interface (Catherasoo & Sturtevant 1983).

By contrast the von Neumann theory is exact (within its assumptions) but it is
only adequate for describing regions of uniform flow, which restricts it to regular
refractions. frregular refractions have non-uniformitics and it is then necessary to
solve the equations of motion everywhere in order to obtain an adequate description
of the phenomena.

In the present paper, we present the results of our numerical studies of slow-fast
refraction with particular emphasis on the jrregular systems. The numerical method
that we used is an adaption of seeond-order, finite-difference solution of the Euler
and continuity equations for the two-dimensional, unsteady, compressible flow of
perfect gases. Tt is an operator split version of the sceond-order Godunov method
developed by van Leer (1979), Collela & Glaz (1985), and Colella & Woodward (1984).
"The results are compared with the experimental data of Abd-El-Fattah & Henderson
(1978b). Agreement with experiment is satisfactory for much of the data, particutarly
if allowanee is made for the effects of gas contamination in the experiment. Some
diserepancies do exist, especially for the a, data for irregular systems. This is aseribed
to uncertaintivs in the measurements caused by the sharp curvature of the
transmitted wave at large angles of incident ;.

2. The experiments

The experimental method has been deseribed by Bitondo (1950}, Jahn (1956),
Abd-El-Fuattah ef af. (1976), and Abd-El-Fattah & Henderson (1978a, b). The
experiments of the last named authors appear to be the most extensive and we
deseribe them brictly. A delicate polymer membrane was set up in a shock tube; its
functions were to define the initial gas interfuce as a plane surface, and to prevent the
gases from mixing until the incident shock arvived. The mass of the membrane was
between 0.5 and 1.0 x 107% kg m2, and its thickness was between 5.5 and 4.5 x {07 m.
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In order to set up a slow-fast interface such as COL/CH,, the CO, was slowly
of the membrane while the CH, was introduced onto the
other. The gases were continuously cireulated through the shock tube to minimize
mutual contamination by diffusion and leakage across the membranc. The
contamination was monitored continuously by a thermal conductivity meter, and
typically the CH, was contaminated by about 10% by volume with 0y, but the (0O,
was much purer. 1t should be noted that the volume of (O, in the shock tube was
about 250 times larger than the CH,.

A shock of prescribed inverse strength £, = /P, was started in the 0O, and
arcanged to strike the membrane/gas interface at a predetermined angle of incidence
a,. The shock shattered the membrane and entered the CH,, and was thus refracted.
The wave system was photographed by a schiieren optical system, and transducers
measurcd the speed and strength of the incident shock.

Recently, Haas & Sturtevant (1981) have experimented with weak shocks
refracting at cylindrical and spherical interfaces. The gases were initially prevented
from mixing by the use of plastic membranes or soap bubbles. However, in the
interest of simplicity we will contine our attention to planc gas interfaces,

introduced onto one side

3. The computations
3.1. The numerical method

We used a sccond-order finite-difference solution of the Euler and continuity
equations on & rectangular grid with reflecting boundary conditions on three sitles
and inflow boundary conditions on the fourth. The numerical integration of the
cquations was accomplished with an operator aplit version of a second-order
Godunov method (van Leer 1979 Colelia & Woodward 1984). [n our implementation
we employed the efficient algorithm for the solution of the Riemann problem
developed by Colella & Glaz (1985). Sinee the method ix a conservative finite-
difference scheme, mass, momentum, and cnergy were all conserved. The method is
accurate to second order in space and time for smooth flow, and captures shocks snd
other discontinuities with minimum numerical overshoot and dissipation. It has been
used quite extensively to compute unsteady shock reflections in gases, and has a
demonstrated ability to tesolve complex interactions of discontinuities in good
agreement with experiment {Glaz et al. 1985}.

An important feature of the numerieal method is that it employs a dynamic
regridding strategy called adaptive mesh refinement {AMR). This entails placing o
finer, rectangular grid over any region of particular interest or excessive error, with
the grid spacing being reduced by an even factor - typically 2 or 4. The boundary of
the refined grid always coincided with the cell edges of the coarse grid. Multiple levels
of refinement were possible with the maximum number of nested grids being supplied
as a parameter by the user. In the present work, we determined those regions that
required refinement by estimating the local truncation error in the density, and
refining wherever the error was greater than an initially gpecified amount. In
addition, we refined to the maximum extent all multifluid cells (those containing
both gases) and all cells lying within two cell widths of a multifiuid cell. Special care
was taken to ensure that the Huxes on boundaries between coarse and fine grids
matched : the details are given by Berger & Colella (1989). Adaptive gridding was &
crucial component of our method which enabled us to resolve important features of
the flow economically. A typical run with two levels of gridding and a refinement
factor of 4 took 10 minutes of CPU time on a CRAY XMP computer.,
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Pure carbon Pure Contaminated
dinxide methane methane
Y 1.248 1.303 {301
I3 44 .01 16.04 18,44

Tanr 1. Properties of the pure and contaminated gases

The gas interface was modelled uging an algorithm of Noh & Woodward (1976)
known as SLIC (Simple Line Interface Caleulation}, Here a number f,;, between 0 and
1, and called the volume fraction, was associated with each grid uc]‘rthrnugh which
the gas interfuce passed. This f,; was the volume fraction of the cell oceupied by one
T)f the gases. Obviously the other gas occupied the fraction 1—f,. During cach
integration sweep a simple picture of the interface consisting entirely of vertical and
horizontal line segments was constructed from this volume fraction information
This was wsed to determine how much of cach gas was conveeted out of the cell un(i
into adjacent cells on this pass, and hence to uptlutc the volume fractions associatoed
with each cell. One of the drawbacks of volume-of-fluid-based interface tracking
schemes such as SLIC iy that in a region undergoing expansion or compression both
of the gases in a multifiuid cell will be expanded or compressed equally, in spite of
the density differences thut may exist between them. To use this method with the
present problem we incorporated a scheme due to Colella, Ferguson & Glaz (1990) in
which the equations of gas dynamics are supplemented with evolution equations for
the volume fraction, total energy, and mass density of cach gas in the multifluid cells
This formulation takes into account the compressibility of each gas component in .E;.
multifiuid cell so as to ensure the correct individual expansions or compressions.

3.2. Outline and plan of the numerical work

We shall present the results of our computations as though we had done a series of
experiments in a shock tube. This means that in a particular scquence, the ratios of
the specific heats y,,y, of the gases and their molecular weights g, ¢, were held
constant and so also was £ The only parameter that varied t,hmugh‘ tlfw sequence
was a,. This was assumed to be initially near the condition for head-one incidence at:
&, = ; it was then inereased in discrete steps until it appronched glancing incidence
at &, = In; thus 0 < o, < In. A particular refraction was uniquely defined once the
rv‘alu‘cs of (Yo ¥ o fip £ t) together with the system boundaries were given.
I'ypically the phenomena that appeared from this procedure were a sequence of
regular refractions followed by an irregular sequence.

We shall compare our numerical results with the experimental data obtained by
AlLd-El- Fattah & Henderson (19788) for the slow-fast, n < 1, CO,/CH, gas interface
There were two artifacts in those experiments which we took into afcbount in {llll:
com!)ut.utiuns in order to make the comparison as accurate as possible. These were
the inertia of the membrane and the contamination of the gases by diffusion and
lenkage across it

Mrf.mbmm inertin We caleulated the membrane density from the published data
fmd it was about 680 times denser than (O, at standard conditions. Using this fa(:t();-
in th.e computations, the membrane was treated as though it were superdense carbon
fhnxulc. Generally its effeet was negligible; all we noticed was a slight displacement
in the pressure contours when the contours were compared with, and withnu‘t, t'he
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membrane for the same refractions. In view of this we deleted it from the remainder
of our computations.

Gas contamination "The published data showed that the methune was contaminated
by about 10% by volume with carbon dioxide, but that the CO, itself was
approximately pure. (Remember their volume ratio in the shock tube was about
2501 in favour of the CO,.) The properties of the pure and contaminated gases are
presented in table 1. Contamination is a significant effect and it will be discussed
below,

4. Results and discussion for a weak shock refraction sequence
4.1. The polar diagrams

The scquence and its polar diagrams are presented in figure 3. They are similar to the
ones deseribed by Abd-EKl-Fattah & Henderson although here we assume that the
(H, is not contaminated by the COQ,. When a, is comparatively small, there is a
regular refraction with a reflected expansion (RRE) (figure 3a), so |7} < [Z], £ <,
1> T > 0. Sinee the refraction is slow-fast, n < {, we have by (1.11) that @, > &,
that is { is steeper than 3. The reficetion e, is a centred, Prandtt Meyer, expansion fan
and it is plotted in the polar diagram as the isentropic curve e. 1L intersects the polar
for the ¢ shock at the point €, which defines the von Neumann solution for RRE. The
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golution requires there to be continuity in the pressure and in the streamline
direetion 8, everywhere along the gas interface, Although (1.2) remains valid when
e, + 0, (1.3) must be replaced by

' B+8, =8, (4.1)
where 8,, 8, and 8, are the deflection angles for the 4,7 and { waves respectively. '!‘his
i the continuity condition for the streanline direction. It is sometimes convenient
to replace (1.2) by the equivalent CXpression

=P+ =) = (- h).

For reflected expansions we must replace (4.3) by

{eonf + J’ cos B, AU, = U, cos B
1

where 1], £, are the driving piston velocities of the { and ¢ thc‘ks, dt),; is the
infinitesimal withdrawing piston velocity for an arbitrary jth wave in the reflected
expansion, and g, f,, g are the wave angles which are defined with respect to the
disturbed gus interfuce (figure 2a and 2e),

If a, i now increased continuously, the polars shrink somewhat and the
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(e}

13424

FNR

Fraune 3. Polar diagrama for a weak shock refraction sequence with £ = 0.78 at & pure o, /'H,
gas interface. (o) Regular refraction, (d) transition, and {e- g) irregular refraction. («) Reflected
expansion, RRE, at a, = 27°,|Z| < |Z/]; (b) degenerate refraction at the angle of intromission a, =
o, & 3206020 Z =L, R=0 T=1, the condition for total energy transmission; () rellected
shock, RRR, at &, = 33.27°, |Z} > IZ}; (d} the shock critical angle a, = 34,4885 (e) hownld
precursor refraction, BPR, a, > a,; {f} free precursor refraction, FPR, # and ¢ are evanescent
wuves; (g) free precursor von Neumann refraction, FNR, M, M, M, free-stream Mach numbers
upstream, and relative to the i1, and r shocks respectively; (e, A, 4,) solutions of the vim
Neumann regular refraction theory; D, disturbed gas interface; 4, intersection point. of the
primary polara (i,£). For other symbols see the caption to figure 2.

intersection point A, of the primary polars (i, {) moves downwards towards the point
i which is the map of the incident shock. As this happens the strength [ — £} of the
expansion decreases and eventually vanishes at the angle of intromission a, = &;, *
32.0502°, which corresponds to €, = i = A,. The reflection iy reduced to a Mach line
degencracy [P, — F| = 0 and the other wave impedances beecome cqual: Z, = Z, It =
0, T' = 1. This is the condition for total transmission, and here also &, > a, (figures 2b

Refraction of shock waves at a slow-fust gas wnlerfuce
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(o) @, =27°

#) a, = 12.0592°

(c) &, =33.27°

Fravre 4{e-c). For eaption see page 13.
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(d) «, = 34.4885°

{e) a, = I8°

Fraure 4{d-f). For caption see facing page.

and 3b). As a, continues to increase, &y > Gy, the reflection becomes a shock (RRR)
(figure 3¢), and now 1Z,| > 14/, & > 0, P > 1, with again a, > a,. The von Neamann
theory gives two solutions A, and A, for RRI, but experiment shows that it is the
weaker A, solution which appears physically. In this respeet note that A, is the
continuation of the ¢, solution while A, is not; in fact at the intromission angle, €, and
A, are identical and degenerate: €, = Ay=A, =1,

Refraction of shock waves at a stow fust gas inerfuce 13

(8) a, = 49°

(h) a, =65

——

Fravke 4. Contour plots of log P for a weak whack Tefraction sequence with £ = 0.78 at a pure
CO,/CH, pas interface. (a) @, = 27°, RRE; (B fotal trunsmission at the angle of introminsion,
a, = a,, ¥ B e} a, = 93.27°, RRI: (d) RRR=BPR, A, = A;. ut the shack critical angle
a,. = MLANGT: (e} @, = 38°, BPR; (f) a, = 43°. FPR () oy = 49°, FPR; (h) o, = 68°, FNR. (The
straight line runging diagonally from upper left to lower right represents the initial, undisturbed
pas interface. 14 is not o pressure contour.)

As a, continues to inerease, A, and A, approach each other and eventually coincide,
A, = A, ligure 3d). This takes place at the shock critical angle &, = @, = 3+.188°. In
geneead this angle does not coineide with the normal eritical angle a., defined by (1.12),
and usunlly oceurs before it, &, < a,. For a, > a,,. the A and A, golutions are no
longer physically signiticant hecause they are unreal. The refraction is now irregrular
a1l PrecUTsor COMpression waves may develop (figure 3e-g). In the cxperiments of
both Jahn and Abd-El-Fattah & Henderson the precursors did not appear as s00n as
the shock eritical angle was excecded. In fact, a; had to increase somewhat beyond
a,,. before they were uhserved. We shall return to this point later.

4.2, The numerical resulls for the sequence

The numerieal results presented here are all for wncontaminated gases with no
membrane. We helieve that these results will be of more gencral interest than those
which inelude the artifacts of the experiments. Sclected  contour plots for the
sequence are shown in figure 4, asehlieren photograph from the experiments is shown
in figure 5 () and colour contour plots to compare with the schlieren photograph are
shown in figure 5(b, ) (plate 1). Of course the comparison can only be qualitative
beeause the numerical results do not include the artifacts. However, note that the
numerical results exhibit all of the cssentiat features of the How which are found in
the sehlieren photo and that these features appear 1o be in the same relation to ohe
another us in the schlieren, We present a more detailed comparison in §4.4 helow.

Incidentally, we prefer the colour contour plots to grey seale plots of the same
quantities ecause we beliove that the eye is more sensitive to changes in colour than
to changes in contrast. We find that colour reveals more detail  such as very woenk
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(a)

FiougE 5. (@) Schlieren photograph and (b, ) colour contour plots for a weak irregular shock
refraction, FNR at a CO,/CH, gos interface with £, = 0.78 and a, = 60°.

waves or weak contact discontinuities - than black and white, or shades or grey. For
example, compare the clarity of the two contact discontinuities cd, and rd, (figures
2f and 10¢) which emanate from the two shock triple points in figures R(e) and 9(b).
Or compare the detail with which the reflected shock v and expansion ¢ are dinplayed
in the schlieren photograph in figure 14 (@) versus the colour contour plots in figure
14(b).

4.3. Structure of the weak irregular refraction systems
4.3.1. The bound precursor refraction system, BPi

The regular systems RRE and RRR are well described by the von Neumann
theory, and in more detail by our numerical results. When the shock critical angle is
exveeded, @, > @, & 34.4885°%, the RRR system becomes augmented  with an
expansion wave e, which appears in the receiving gas (CH,), and with its pressure
contours apparently contred on the refraction point I (figures Je, 4¢). The contours
at first diverge as they move away from K, but then swing around and refract into
the incident gas (CO,) where they converge into a compression downstream of the
reflocted shock r. According to the von Neumann theory, there are no physically
aceeptable solutions for a, > s, and the impedances of the transmitted and refected
waves are unreal. For these reasons the system is irregular. The r and ¢ shocks now
have sharply increased curvatures near R, and furthermore ¢ is now loeally inclined
forward of B, a, > Ix (figure 4e). By contrast, for the regular systems ¢ is everywhere
inclined backwards, a, < i (tigure 4a-d}. Thus ¢ is a precursor wave for a, > o, and
because it apparently moves along the gas interface at the same veloeity as ¢ and 7,
that is (1.9} remains satisficd, ¢ is therefore also a bound precursor. Like Abd-El-
Fatiah & Henderson we shall eall this system a ‘hound precursor refraction” (BPR).
{n summary a BPR differs from an RRR both by the appearance of a fourth wave
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Fiauge 9. (@) Seblieren photograph and {b, ¢} tolour contour plots for a twin Mach reflection
type refraction, TMR (see figure 2f), with £, =0.18 and a, = 66° at & CO,/CH, gus interface.

and by the fact that ¢ leans forward (a, > ir) at the interface, whercas it leana
backwards (&, < i) for a RRR. The detailed structure of the BPR and especially of
the fourth wave as displayed in figure 4{e} have not been reported previously to our
knowledge. Indeed some doubt has been expressed as to whether & BPR is a basic
gystem or iy merely an experimental artifact (Catherasoo & Sturtevant 1943). Our
pumerical results provide good evidence to support the existence of it as a basic
system.

4.3.2. The condition for the RRR = BI'R transition

The shock critical angle o s defined by the double root A, = A, of the von
Neumann theory (figure 3d), and this amounts to a generalization of the well-known
shock detachment eriterion for regular/irregular transition in shock reflection.
Inspection of the polar diagrams reveals that the flow downstream of the reflected
ghock is always supersonic, M, > 1, for the 4, solution, and accordingly the sonic
eriterion {or its generalization to refraction) proposed by Hornung & Taylor (1982)
cannot oxist for the reflected shoek, However, it can exist for the transmitted shock
t, and in fact it docs exist at an &, about 1° smaller than ag. This difference is too
small for experiment to discriminate, and we have not done the detailed and
expensive computations necessiry to decide the matter. Although the numerical
data show that the RRR=BEPR transition is elose to the generalized detach-
ment/sonic point for the ¢ shock, experiment suggests that transition is delayed
to values of @ somewhat larger thun a, = a,. In the experiments trangition i8
gomewhat obscured by the wire frame on which the membrane was mounted, and
also by a thin fitm of silicone oil which was used to seal the wire to the shock tube
windows to reduce gas leakage, In view of this we conclude that transition occurs
cither at the generalized detachment/sonic point, or close to it.
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Flaone 6. Experimentat and computational wave angle data for a CO/CH, gas interface with
E, = 0.78, Syuare symbols represent data from computations with a 16 % contamination of the {*H,
by the (O, Circular symbols represent data from computations with pure gases. All other symbiils
represent experimental data. B, G, A. Transmitted shock angle o, 0, ©, x, reflected wave angle
a,ora; e+, wide shock angle a,; 3, 0. A, interface deflection angle 8,; 0. O, +, trajectory
path angle y; see figure 2 for the definition of the wave angles. (Fxperimental data from Abd-Kl-
Fattah & Henderson 1978b.)

It is interesting to note that the condition a, = In must also be attained during the
transition RIRR == BPR, because as this occurs we have seen that (o, < i) »{a, >
1), Therefore the condition corresponding to the normal critical angle e, defined by
(1.12) is foreed to occur at the same condition as the shock critical angle 2, even
though a,, < a,.

4.3.3. The free precursor refraction system, FPR

With steadily increasing a,, the { wave eventually breaks loose from the i and 7
shocks and runs shead of them along the gas interface {figure 4f k). The refraction
law has now been violated as with expression (1.10), and there is now a free precursor
refraction (FIPR) in which the £ wave moves ever further ahead of ¢ and r with time.

1t will be noticed that the pressure contours for the ¢ wave are now spread out at,
and near, the gas interface (figure 4f-4), instead of being coneentrated as for s shock
(figure 4¢). Thus t s a locally smeared out or evanescent wave. However, further away
from the interface the contours do converge to form a coherent shock. The ¢ wave is
itself refracted from the CH, back into the COy, which means that its refraction is
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Fraurk 7. Comparison of the wave upeed ratio I/ 1] (soe figure 2¢)fora (Y();/(SH. gan interface with
£, =018 O, Computed data for pure gasen; [, computed data for 10% contamination of the CH,
by the (O, A, experimental data (from Abd-FI-Fattah & Henderson 19786).

focally fast slow, n > 1. The wave transmitted into the CO, is the side wave s (figure
3f. ¢). and it is also an cvanescent wave. Since locally n > 1, then j,| > [, The
contour plots show no sign of a refected wave from the t-s refraction, nor does there
soem to be one in the experiments {presumably it i too weak to be resolved). Thus
the local system appears to consist only of the (- pair. The 8 wave and the incident
shovk @ eventually encounter, and mutually modify, each other. The s contours
converge to the reflected ghock 7 after passing through 4. The modified shock £,
continues 1o the disturbed gas interface where it is locally refracted with total
internal refleetion R =—1, T =0, %, = 1. This means that k is reflected as a centred
expansion wave, . This last wave eventually overtakes r and causes almoat complete
mutusl cancellation, so that finally a weak reflection is propagated into the
downstream CO, (figure 4f-A). 1t is clear from both the experimental and numerical
results that & is an evanescent wave. The numerical results show that ¢ s also
evaneseent but the experiments cannot resolve it. Hence the computation arc
predicting a new result for this wave.

11 is natural to consider the conditions where a bound precursor system becomes
a free precursor system or vice versa, BPR=FPR. This is associated with the
spreading out of the I wave intu a distributed compression near the interface and it
then runs shead of the @ and r shocks along the interface. Therefore the transition
oeeurs with the violation of the refraction law (1.9}, in other words (1.10) now applies.
The law is of course immediately re-established for the precursors

i _ 1
sing, sne

4.3.4. The free precursor von Newmann refraction system, FNR

Transition to yet another irregular refraction takes place as a, continucs to
inerease. 1t is charpeterized by a weak Mach reflection sppearing in the (0, Some
pressure contours of it are presented in figure 4 (A and a schlicren photograph and
colour graphies in figure H(a ¢). Abd-El-Fattah & Henderson (1978b) calied this a
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(¢) &, = 30°

{B) a, = 43°

[

Fiourk 8(a,b). For caption see facing page.

“free precursor von Neumann refraction’ (FNR). See figures 2(d), 3(g), 4(h), and
5(a—¢) of this paper. The conditions for the FPR—= FNR transition are not known
and our computations are not sufficiently detailed to form a hypothesis with any
confidence,

In summary the sequence of phenomena for the refraction of a weak shock at a
slow-fast gas interface with increasing angle of incidence a, is as follows:

RRE=RRR=BPR=FPR=¥F¥NR.

This sequence scems to be generally well supported by both the computations and
by the experiments.

4.4. Comparison of the numerical results with experiment
In the interests of making the comparison as precise a8 possible we used the same
values of the parameters (Yo Yor s firs £ ) Tor our input data as Abd-El-Fattah &
Henderson measured in their experiments, This included using the data for the
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(€) a, = 46°

{d) a, = 66"

(e) a, = 66°

Fiavre 8. Contour plot of (a d) log P and (¢) log p from computations of a strong shock refraction
pequence, £, = 018, at a pure C0,/CH, gas interface. (The straight line running diagonally from
upper left to lower right reprosents the initial, undisturbed gas interface. Tt is not a pressure

contour.)

contaminated gas shown in table 1, and the same boundary configuration. Some of
the computations were repeated for the pure gases in order to obtain an estimate of
the sensitivity of the results to gas contamination. The numerienl data for the pure
and the contaminated gases are compared with experiment in figures 8 and 7. Figure
& shows a variety of wave angles as well s the interfuce deflection angle &, (figure 2«)
and the trajectory path angle x for the intersection of the 4, k, 8 and 8" waves (figure
2¢f). For the regular part of the sequence, RRE = RRR, the numerical results for the
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contaminated gas are everywhere in satisfactory agreement with experiment, but the
corresponding results for the pure gases show a significant discrepancy for the a,
data, but not for the a,,a,, and 8, data. So only the a, data scem to be sensitive to
contamination, and that sensitivity is greatest near transition a, = a,, = 34.4885°
(A, = A,) where small variations in the contamination can cause significant changes to
a,. Thus, for regular refraction the a, data are sensitive to contamination while the
data for other angles are not. This is ascribed to the fact that incident and reflected
waves propagate in the CO, which is little affected by contamination because of the
jarge fraction of the volume it occupies in the shock tube, while the £ wave propagates
in the CH, and this is significantly affected (table 1).

After transition to irregular refraction the numerical data for the contaminated
gas are again in agreement with experiment so long as, approximately, & < 50°; but
significant discrepancics are evident for a, > 50°, particularly for the a, data. For
irregular refraction the { wave is everywhere curved, and as a; > 50° increased we
found that this curvature became quite sharp near the gas interface. This made the
choice of where to draw the tangent to ¢ in order to measure a, at the interface
increasingly uncertain. The same difficulty occurred for both the schlieren
photographs and for the contour plots. We therefore looked for more robust data to
compare with the experiment, which we found in the measurements of the wave
velocities U and 1. The numerical data for {}/U] are compared with experiment in
figure 7. These data include the computations for the pure and the contaminated
gascs, and it will be noted that the results bracket the experiment data.

It should be remarked that the measurements of the gas contamination are only
average values obtained after the contaminated gases had been drawn from the
shock tube and individually sent to the thermal conductivity meter. Therefore the
jocal contamination near the gas interface could have been significantly different
from the average value obtained at the meter. In view of the uncertainties involved
we conclude that the agreement between the numerical data and experiment is
satisfactory.

5. Results and discussion for a strong refraction sequence
5.1. Wave structures in the sequence

A second series of computations was done for the CO,/CH, interface, except that 4
was now a strong shock, § = 0.18; this work was restricted to the pure gases.
Selected contours are presented in figure 8, and a schlieren photograph together with
colour graphics are presented in figure 9 (plate 2). A comparison with experiment
cannot be precise because the effect of gas contamination has not been taken into
account in the computations. However, note that the computational results in
figures 9(b) and 9(c) clearly display all of the key features of the refraction found in
the schlicren photo in figure ${a), especially the two-shock triple puints i-n-r and
s-n-+' and the two contact discontinuities ed, and cdy emanating fromthese triple
points (figure 2f).

The polar diagrams are presented in figure 10. When a, is small cnough to result
in regular refraction, the von Neumann theory provides three physically aceeptable
golutions, namely two with reflected shocks A,, A; and one with a refleeted expansion
¢, (figure 10a). It was the ¢; (RRE) solution which Abd-El-Fattah & Henderson
observed. With inereasing a, one obtains the coincidence A, = A, =i = A4,, und then
the reflected shocks in the A, A, (RRR) solutions degenerate to Mach lines {figure 10).
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Although this takes place at the angle of intromission o, = 35.94°, it has no physical
significance in this case becausc ¢, is not degenerate at this condition. Hence the
impedances are not equal, Z, * Z,, for the solution ¢, that is actua!ly obscrved._
For a, > oy, the A Ag, golutions are unrcal and at the same time we obtain a
second solution &, of the RRE type (figure 10¢). However, onee more it was the €
solution that Abd-Ll-Fattah & Henderson observed. Clearly, at o = @iy the
coincidence can be extended to g thus, A, = AA=g=i= A,. Notice, however, that

T &



22 L. F. Henderson, P. Uolella and K. (1. Puckett

() f\ log ;_’;

7 /'"m

— 40 -0 0 20 40
& (deg.)

-3 —-15 [} 15 k1]
& (deg)

Fiaure 10. Polar diagrams for a strong shock refraction sequence with £, = 0.18at a pure CO,/CH,
gas interface. (a) RRE, ¢, volution at a, = 30°, () RRE, ¢, nolution at 2, = a,, = 35.05°. Note that
€, is not a continuation of either the A,, or A, solutions, therefure the shock critical angle for A, =
A, is irrelevant for transition to irregular refrection in this case; (¢) RRE, at a, = 37°; note there
are now two RRE solutions, €, and €,; the ¢, solution is observed in experiments; (d) RRE, at the
relevant shovk critical angle, €, &€, @, = a,, = 46.204°; this is the transition condition for
RREz=TMR; {¢) twin Mach reflection-refraction TMR at o, = 66° > .

the €, solution nowhere forms a coincidence with cither the A, A, solutions ax it did
at the 4, point in the weak sequence. Consequently, by continuity no refraction of
the RRR type can appear in this strong sequence.

As a, continues to increase one eventually obtains €, = ¢, (figure 10d), where the
isentropic ¢ is tangent to the ¢ polar. This again occurs at the shock critical angle
,, & 37.79°, but it differs from the weak series in that the coincidenco is an RRE type
€, = &, instead of tho RRR type, 4, = A,

For a, > a,, the refraction is irregular and both the experiments and the
computations agree that it is again a free precursor system. However, the numerical
results show that both the ¢ and the s waves are shocks and not cvanescent
compressions as they were in the weak sequence. Structurally the system consists of
the precursor transmitted-side shock pair t-s, interacting with a single Mach
reflection triplet of shocks i -r—n (figure 10¢). The side shock g now interacts with the
Mach shock n, modifies it and produces the second reflected shock . Consequently,
there are two Mach reflections in the incldent gan, i-n-r, and s-n~r', the refraction
will be called a * twin Mach reflection—refraction” {TMR). The r" shock undergoes total
internal reflection at the disturbed gas interface and gives rise to the reficcted
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Fanne 11, Comparison of the wave speed ratio {1 (wee figure 20} for a CO,/CH, gas interface
with £ = 0.18. @, Computed data for pure gases; A, experimental data (from Ahd-El-Fattah &
tHenderson EYTHA).
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Fuwsuke 12, Experimental and computational wave angle data for a CO,/CH, refraction with §, =
0.18. Circular symbols represent data from computations with pure gases. All other symbols
represent experimental date, O, 4, Transmitted shovk angle a,; 0, x, reflected wave angle a, or
a,; @ +. wide shovk angle 2,1 ©, B, intorfacs defleetion angle 8, O, +, trajectory path angle x,;
O, [, trajoctory path angle ¥, (Experimental data from Abd-El-Fattah & Henderson 10784.)
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(@)

Frauge 13. (@) Schlieren photograph and (8, ¢) eolour contour plots for a twin regular reflection type

refraction, TR (see figure 2e) £ = 0.53, a, = 50.5°, at & CO,/CH, gas interface. See also the
caption to figure 5.

expansion e, which in turn overtakes and attenuates r. Contact discontinuitics ed,
and cd, appesr at the MR triple points (figures 2f, 8¢, 9a, b and 10¢); of course they
are not visible in figures 8(d) and 9(c) gince these are contours of log p. There are now

three shear layers in the downstream flow, namely ed, and rd,, and the disturbed gas
interface.

5.2. Comparison of the numerical resulls with experiment

The numerical results are compared with the experiments data in figures 11 and 12.
As expected the discrepancy for the «, data is comparatively large because we did not
take into account the gas contamination. Qualitatively it is similar to the discrepancy
for the weak series in figure 8. The increasing size of the discrepancy for the irrogular
refraction is again attributed to the uncertainty of measuring a, with increasing
curvature of the ¢ shock near the interface. The angle data for x,, xa and 4, arc
gencrally in satisfactory agreement, granted the numerical and experimental
uncertainties. These last measurements were made either for the CO, How ficld, or
along its boundary (8,) and, as we have scen, such measuroments are ingensitive to
gas contamination. The eurvature of the reflected shock r prevented us from making
reliable measurements of a,, while the short length of the side shock s similarly
prevented reliable measurements of a,. The discrepancies for a, and a, arc significant
and are attributed to these uncertaintics.

In figure 11 the numerical data for /U display a small systematic discrepancy
from the experimental data. This is qualitatively similar to the purc gas results
shown in figure 7, and is ascribed to the same cause, namely gas contamination.
Nevertheless, the agreement with experiment is quite reasonable.
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Fraurg 14. (¢) Schlieren photograph and {b.¢) colour contour plots for a twin von Neumann
irregular refraction, TNR (Abd-El-Fattah & Henderson 1978b) at a CO,/CH, gas interface with
£, = .53 and a, = 62°.

6. The boundary between the strong and the weak systems

We consider how a weak irregular refraction may be changed into a strong one, or
viee versa, FNR=TMR. This will be done by continuously reducing £, from § =
0.78 where the system is weak, to £, = 0.18, where it is strong. in the following
discussion the parameters (¥, Ve fe #4) will be held constant and a, will be allowed
to vary only slightly while g, is decreased. We begin by considering the weak,
irregular refraction that we call FNR at £ = 0.78 (figures 4A and 5a-<). As £
decreases the shock triple points Fy. F, (figures 2f and 3g) continuously approach the
quadruple point &7 (figure 2e) and then for some £, they coincide with it, K=F=
¢!. The weak Mach reflection has now vanished and the number of shocks in the
incident gas are reduced to four, ia-r—k (figure 2¢). If we imagine that the CH, is
replaced by a rigid medium with the same boundaries, then the four-shock
interaction would amount to the twin regular reflection studied by Smith (1959).
Since the ¢ and & shocks are generally of unequal strength, their interaction i3
asymmetrical and a contact discontinuity arises in the downstream flow. A schlieren
photograph of this refraction, obtained by Abd-El-Fattah & Henderson with & =
0.53 and a, = 50.5° is presented in figure 13(a), together with colour contour plots
from the computations in figure (13b, c} (plate 3). We shall call it & twin regular
reflection -refraction (TRR). Actually the cited authors found that this system
existed for a range of £ and not just for a particular value on the boundary between
the strong and the weak systems. If £, = 0.53 is held constant and a, is now increased
to &, = 62°, then the four-shovk system changes into the twin von Neumann system
(INR) (Abd-Kl-Futtah & Hendorson 19786) shown in figure 14 (plato 4). Eventually,
however, as § becomes small enough the four-shock systom in the TRR changes to
the twin Mach reflection characteristics of a TMR at § = 0.18, and &, = 60° (figures
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2f Bd,e, 9, and 10e). The condition for the TRR=TMR transition have heen
discussed by Smith for reflection, and Abd-El-Fattah & Hendegson for refraction,

A variety of special conditions may be used to dpfine precisely the strong/weak
boundary. Some of them have been discussed by the above authors. Here we notice
that for weak systems the regular/irregular transition RRR = BIPR takes place at
the von Neumann tangency point A, = A,, that is at .., but fof strong systems the
tangency condition has a different character €, = ¢y, 50 RRE=TMR, but again at
a,.. It seems plausible therefore to define the strong/weak boundary at the point
where both conditions are in coincidence, A, = Ay =€ =g =1i=4, For the pure gy
interface CO,/CH, this is approximately at £, = £, =0471 and a, = 34.05°. No
an incident shock ¢ has a weak refraction whenevey £ > £, and a strong one when
£ < Xo-

Abd-El-Fattah & Henderson used a different copdition for the boundary, based
upon & generalization of the von Neumann classificgtion for shopk reflection, but the
definition of the boundary is somewhat arbitrary.

There is some hint that in our results for the strong sequenge £ = 0.18, the four-
shock TRR system appears immediately after trasgition to an irrcgular refraction.
However, it is not resolved uncquivocally, and in any event a TMR s certainly
present when o, increases by only a small further amount.

Each regular or irregular wave system occurs for definite ranges of values of the
system parameters (¥, Yo i #4 £ ), Bnd it is possible to produce a topological plot
of £, versus a, for a given combination of gases (¥, Ve fo ). Abd-El-Fattah &
Henderson (1978b) did this for the CO,/CH, interface and we refer the interested
reader there for further details.

7. Concluding remarks

In our computations of the weak refraction sequonce we used the same input data
as Abd-El-Fattah & Henderson had measured in their experiments. This included
the effects of gas contamination due to leakage and diffusion across the membrane,
and also the inertia of the membrane, The object was to test the validity of the
computations by obtaining as precise a comparison with experiment as possible. We
found that the membrane inertia made very little difference and we ignored it in our
lator computations. However, our data for the wave angle a, of the transmitted
shock was sensitive to gas contamination, and to & fesser extent 8o was the wave
velocity U data of this shock. None of the other data displayed such sensitivity, and
this was ascribed to tho fact that «, and {j were measured for the CH, component
which was significantly affected by contamination {table 1) whereas the other data,
X» 0, &, and so on, were measured for the (0O, camponent which was very little
affected by the contamination.

Our computations were everywhere in reasonable agreement with experiment
when gas contamination wag taken into account, except for the o, data when,
approximately, a, > 50°. That discrepancy was ascribed to the uncertainty of
making aceurate measurements of a, owing to the inpreasingly large curvature of the
transmitted wave with increasing a,. This uncpriainty applied to both the
experimental data and to measurements made fromy the contour plots,

The computations were done for inviscid gases ang sinee the results were generally
in good agreement with experiment it is concluded that viscosity had no significant
offect on the measurements. Presumably viscosity would be of most importance in
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pases, The computations allowed vorticity production and transport but not viscous
diffusion.

"The computations resolved the structure of the bound precursor refraction (BPR),
and revealed the presence of 8 fourth wave, which was an expansion and apparently
centred on the refraction point. After transition to a free precursor system, BPR=
¥R, the transmitted /side shock pair were found to be gmeared out in the region of
the gas interfaee, which we called evapescent waves.

Similar effects were found in our computations for stronger refraction and were
ascribed to the same causes, Our computations displaycd all the principle features
found in experiment, such as local single Mach refleetion-refractions, twin Mach
reflection refractions, free precursor shocks, contact discontinuitics, reflected
cxXpansion waves, and so on. In particular our computations were able to accurately
and sharply resolve contact discontinuities, for example those emanating from shock
triple points (figures 10, 13, and 14). This has historically been a difficult task for
numerical methods primarily designed to capture shocks. We conelude that the code
does provide a satisfactory representation of the refraction phenomena even though
it ignores the effects of viscosity and three-dimensionality.

"This work was performed under the auspices of the US Department of Energy at
the Lawrence Livermore National Laboratory under contract number W-7405-
KNG-48 and partially supported by the Applied Mathematical Sciences subprogram
of the Office of Energy Research under contract number W-7405-Eng-48 and the
Defense Nuclear Ageney under IACRQ 88-873.
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